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Introduction
CD36 is an 88-kDa membrane protein expressed at the surface 
of a wide variety of cell types, including adipocytes, skeletal 
muscle cells, and monocytes/macrophages (1). It belongs to 
the B scavenger receptor family and binds with high affinity 
to lipid-based ligands such as modified low-density lipopro-
tein, long-chain polyunsaturated fatty acids, and apoptotic cell 
membranes (1,2).

Gene knockout and overexpression experiments in mice 
have indicated that CD36 plays a role in energy metabolism, 
fat storage, and adipocyte differentiation (3,4). Muscle-specific 
CD36 overexpression enhances fatty acid oxidation, decreases 
plasma free fatty acid, glucose and insulin levels, and lowers 
body weight (3). In contrast, CD36 invalidation is associated 
with high plasma free fatty acid and triglyceride levels, low 
fasting glucose levels, and less weight gain during a high-fat 

diet (5). In humans, CD36 is also related to metabolic disor-
ders. First, CD36 deficiency (type 1) is associated with certain 
features of metabolic syndrome (6,7). Second, CD36 expres-
sion in adipocytes is positively correlated with body fat (BF) 
(8) and is reduced after a period of weight loss (9). Third, sev-
eral single-nucleotide polymorphisms (SNPs) in the CD36 
gene have been associated with metabolic disorders related to 
excess fat depots (10–14), and a (TG)-repeat in intron 3 has 
been linked to an elevated BMI in Korean patients with coro-
nary heart disease (15).

The above-mentioned studies assessed the association 
between CD36 SNPs and metabolic disorders in adults (10–14). 
However, it is not yet known from population studies whether 
CD36 SNPs influence BF in adolescents. Genetic association 
studies in young people are important in that the influence 
of behavioral and exogenous factors are less marked than in 
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adults leaving a proportionally greater influence of genetic 
determinants on the phenotype. Hence, the aim of this study 
was to assess the relationship between CD36 genetic variability 
and obesity and BF accumulation in a population of adoles-
cents. We compared the distribution of seven CD36 SNPs in a 
case–control study on obesity and then looked for a relation-
ship between these SNPs and the percentage of BF (BF%) in an 
independent sample of European adolescents.

Methods and Procedures
The Pécs case–control study on obesity
The study population consisted of 307 adolescents referred for obes-
ity to the outpatient clinic of the University of Pécs’ Department of 
Paediatrics (Pécs, Hungary) and 339 healthy, normal-weight adoles-
cents recruited via Pécs schools. Subjects were aged between 13 and 17. 
Obesity was defined as a BMI over the value given by Cole et al. (16), 
corresponding to 30 kg/m2 at the age of 18. None of the subjects had 
chronic diseases and none were taking drugs or were dieting. Blood 
samples for DNA extraction was collected in EDTA K3 tubes. Genomic 
DNA was extracted from peripheral blood leukocytes, according to a 
standard procedure.

The HELENA cross-sectional study
Recruitment and phenotyping of the participating adolescents in the 
HELENA study (HELENA-CSS, the validation study here) (“Healthy 
Lifestyle in Europe by Nutrition in Adolescence,” www.helenastudy.
com) have been described previously (17). Briefly, a total of 3,865 ado-
lescents aged 12–18 years old, were recruited between 2006 and 2007. 
Data were collected in 10 centers from 9 European countries (18). 
Subjects were randomly selected according to a proportional cluster 
sampling methodology taking into account geographical repartition in 
each city, private/public school ratio, and number of classes by school. 
One-third of the classes were randomly selected for blood collection, 
resulting in a total of 1,155 blood samples for the subsequent clinical 
biochemistry assays and genetic analyses.

In both the Pécs case–control study and the HELENA-CSS, data were 
collected on a detailed case report form, in accordance with standardized 
procedures. In each center, trained physicians carried out complete physi-
cal examinations, including weight, height, and blood pressure measure-
ments. For both studies, the protocol was approved by each investigating 
center’s independent ethics committee (19). Written, informed consent 
was obtained from each adolescent and both of his/her parents or legal 
representatives. Participation in the studies was voluntary.

Anthropometry
Skinfold thicknesses were measured at six sites (biceps, triceps, sub-
scapular, suprailiac, thigh, and calf) using a Holtain Caliper (20). The 
reliability of skinfold thickness measurements is known to be adequate 
for epidemiological surveys (21). BF% was derived from the skinfold 
measurements according to the equations published by Parizková et al. 
(22). The BMI was calculated.

Blood analysis
Blood for DNA extraction was collected in EDTA K3 tubes, stored at 
the Analytical Laboratory at the University of Bonn and then sent to 
the Genomic Analysis Laboratory at the Institut Pasteur de Lille in 
Lille, France (23). DNA was extracted from white blood cells with the 
Puregene kit (QIAGEN, Courtaboeuf, France) and stored at −20 °C.

Gene SNP selection and genotyping
With the criterion used in our SNP selection procedure (a minor allele 
frequency above 0.1 and tag SNPs with an r2 value >0.8), the HapMap 
database (2007 release; http://www.hapmap.org) describes five haplo-
type blocks and two independent SNPs that span the whole gene. In this 

study, we selected one SNP from each of the five haplotype blocks (block 
1: rs1527479, block 2: rs3211816, block 3: rs3211867, block 4: rs3211883, 
and block 5: rs3211931) and the two independent SNPs (rs3211908 and 
rs1527483). We also selected three other SNPs (rs1984112, rs1761667, 
and rs1049673) from the literature (12) in order to cover the whole 
range of gene variability. Altogether, subjects were genotyped on an 
Illumina system, one SNP (rs1761667) using the VeraCode technology 
and the nine other SNPs using GoldenGate technology (http://illumina.
com/). Genotyping was performed once for each sample.

Statistical methods
Statistical analyses were performed with SAS software (SAS Institute, 
Cary, NC). Departure from Hardy–Weinberg equilibrium was tested 
using a χ2-test. Interlocus linkage disequilibrium (LD) was assessed 
using Haploview. Allele frequencies were estimated by gene-counting. 
In the Pécs case–control study, multivariate logistic regression was used 
to calculate the odds ratios (ORs) for obesity for different allele expo-
sures, using various genetic models. Adjustment variables were age and 
gender. A general linear model was used to compare mean values of 
anthropometric markers. In this case, the adjustment variables were 
age, gender, and center. Dominant and recessive models were tested. 
Given the rarity of some minor allele only the dominant models are pre-
sented. The statistical significance threshold was set to P ≤ 0.007 (after 
Bonferroni correction, i.e., 0.05/7) for the Pécs case–control study and 
to P ≤ 0.05 for the HELENA-CSS (validation study). Haplotype analyses 
were based on a maximum likelihood model (24) linked to the s.e.m. 
algorithm (25) and were performed using the THESIAS software pack-
age developed by INSERM unit U525, Paris, France (http://ecgene.net/
genecanvas) (26). All variables were normally distributed.

Results
Table 1 shows the clinical characteristics of the subjects from 
the case–control and the cross-sectional studies. The mean age 
(s.d.) of the obese and normal-weight adolescents in the case–
control study and the adolescents in the cross-sectional study 
was 15.0 (1.1), 14.6 (1.1), and 14.8 (1.4), respectively. There 
was a higher proportional of girls in the normal-weight con-
trol group and in the cross-sectional study than in the group 
of obese adolescents. As expected, obese adolescents had sig-
nificantly higher BMI and BF% values than the normal-weight 
adolescents in the case–control study (all P < 0.001).

Table 1 C haracteristics of the subjects

Obesity case–control study
HELENA cross-
sectional studyNormal weight Obese

n 339 307 1,151

Boys/girls 164/175 165/142 552/599

Age (years) 15.0 (1.1) 14.6 (1.1) 14.8 (1.4)

Weight (kg) 56.4 (8.9) 91.4 (18.6) 58.3 (13.0)

Height (cm) 168.4 (8.7) 166.8 (8.8) 165.0 (9.6)

BMI (kg/m2) 20.1 (2.5) 32.7 (5.5) 21.3 (3.7)

BF (%) 25.1 (6.4) 39.4 (6.0) 26.5 (6.9)

Systolic BP  
(mm Hg)

118.6 (13.5) 127.6 (11.0) 118.2 (13.8)

Diastolic BP 
(mm Hg)

66.6 (8.6) 72.4 (8.4) 67.3 (9.8)

Data are means (s.d.).
BF, body fat; BP, blood pressure.
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DNA samples were genotyped for the 10 selected CD36 
SNPs. The genotyping success rate varied between 97.1 and 
100%. In each study, all the observed SNP genotype frequencies 
conformed to Hardy–Weinberg proportions. The LD pattern 
for the SNPs was assessed in the HELENA-CSS using both 
the D′ and r2 values (Figure 1). The three SNPs selected from 
literature data (rs1984112, rs1761667, and rs1049673) were 
in strong LD with three haplotype blocks described by the 
HapMap database (rs1761667 with rs1527479 (block 1) (D′ = 
0.98, r2 = 0.93), rs1984112 with rs3211816 (block 2) (D′ = 0.97, 
r2 = 0.89], and rs1049673 with rs3211931 (block 5) (D′ = 1, r2 = 
0.98)). Thus, further analyses were performed with the seven 
following SNPs: rs1527479, rs3211816, rs3211867, rs3211883, 
rs3211908, rs3211931, and rs1527483.

Table 2 shows the genotype distribution of the seven CD36 
SNPs in obese and normal-weight subjects, the age- and gen-
der-adjusted OR and the 95% confidence interval for obesity 
from the case–control study. Using a dominant model, seven 
SNPs were associated with a higher risk of obesity (rs3211867: 
OR (95% confidence interval)= 1.96 (1.26–3.04), P = 0.003; 
rs3211883: OR = 1.73 (1.16–2.59), P = 0.007; rs3211908: OR = 
2.42 (1.47–4.01), P = 0.0005 and rs1527483: OR = 1.95 (1.25–
3.05), P = 0.003). After Bonferroni correction, the rs3211867, 
rs3211883, rs3211908, and rs1527483 SNPs were still signifi-
cantly associated with a greater risk of obesity.

Table 3 shows the BF% and BMI as a function of the CD36 
genotypes in the cross-sectional study. Multivariate analyses 
(adjusted for age, gender, and center) revealed that the mean 
BMI and BF% were significantly higher in carriers of at least 
one minor allele of rs3211867 (BMI: P = 0.03, BF%: P = 0.02), 
rs3211883 (BMI: P = 0.03, BF%: P = 0.05), rs3211908 (BMI: 
P = 0.04, BF%: P = 0.02), and rs1527483 (BMI: P = 0.05, BF%: 
P = 0.04) compared with individuals who were homozygous 
for the common allele. These associations were not modified 
by further adjustment for pubertal status (data not shown).

Haplotype analyses using the seven SNPs (order: rs1527479, 
rs3211816, rs3211867, rs3211883, rs3211908, rs3211931, and 
rs1527483) were performed to assess the relationship with 
obesity in the case–control study and the association with BMI 
and BF% in the HELENA-CSS. Nine haplotypes had an esti-
mated frequency of >1% (Tables 4 and 5).  Compared with the 
most common haplotype (GGCTGGG; estimated frequency: 
0.44), 1 haplotype: AGAAAAA(estimated frequency: 0.05, 
minor alleles underlined) was significantly associated with a 
higher risk of obesity (OR: 2.28 for obesity; P = 0.0008). This 
haplotype was also associated with a higher BF% (P = 0.03) 
and BMI (P = 0.04) in the cross-sectional study.

Discussion
The goal of this study was to assess whether common polymor-
phisms at the CD36 locus could affect body-weight regulation 
in adolescents. The results showed that four SNPs were associ-
ated with a higher risk of obesity in the case–control study and 
excess adiposity in the cross-sectional study. Further analyses 
identified a haplotype carrying the minor allele of these SNP as 
being linked with obesity and a higher BF in the two studies. 
These findings, however, must be interpreted with caution and 
replication in other population samples are necessary before a 
link between CD36 gene variability and body-weight metabo-
lism can definitely be established.

The rs3211908, rs3211867, rs3211883, and rs1527483 SNPs 
were related to the risk of obesity and the BF although the 
strength of the association was weaker for the latter three 
SNPs. These SNPs were in partial LD with rs3211908 (0.43 < 
r2 < 0.64), suggesting that the results reflect a single signal. 

rs1984112

66 rs1761667

63 93 rs1527479

89 61 65 rs3211816

4 7 8 4 rs3211867

5 10 11 5 67 rs3211883

3 5 4 2 61 43 rs3211908

27 40 41 28 1 3 5 rs3211931

2 3 3 1 41 29 63 8 rs1527483

28 40 41 28 1 2 5 98 8 rs1049673

D′ > 90
90> D′ >70
70> D′ >60

60> D′ >40

Figure 1  Linkage disequilibrium pattern for the investigated CD36 gene 
SNPs. Color codes are for D′ and numbers are for r2 values. 

Table 2  Genotype distribution in obese and normal-weight subjects of the Pécs case–control study

 

Normal weight Obese

P* OR (95% CI) P**11 12 22 11 12 22

rs1527479 98 (0.29) 174 (0.52) 66 (0.19) 64 (0.21) 155 (0.51) 86 (0.28) 0.01 1.42 (1.06–2.10) 0.09

rs3211816 134 (0.40) 162 (0.48) 40 (0.12) 111 (0.36) 152 (0.50) 43 (0.14) 0.55 1.13 (0.82–1.57) 0.44

rs3211867 299 (0.882) 40 (0.118) 0 244 (0.797) 60 (0.196) 2 (0.007) 0.004 1.96 (1.26–3.04) 0.003

rs3211883 284 (0.840) 53 (0.157) 1 (0.003) 233 (0.764) 68 (0.223) 4 (0.013) 0.03 1.73 (1.16–2.59) 0.007

rs3211908 311 (0.917) 28 (0.083) 0 255 (0.831) 49 (0.160) 3 (0.009) 0.0009 2.42 (1.47–4.01) 0.0005

rs3211931 108 (0.32) 163 (0.48) 66 (0.20) 84 (0.27) 149 (0.49) 74 (0.24) 0.26 1.26 (0.89–1.78) 0.19

rs1527483 299 (0.885) 39 (0.115) 0 248 (0.808) 55 (0.179) 4 (0.013) 0.004 1.95 (1.25–3.05) 0.003

Data are n (freq). Frequent allele: 1; minor allele: 2.
CI, confidence interval; OR, odds ratio.
*P value is for χ2-test. ORs. **P values are for dominant model. P values are adjusted for age and gender. 
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This  hypothesis is further supported by haplotype analysis, 
which showed that only one haplotype (AGAAAAA; frequency 
~5%) carrying the minor allele of the four SNPs was associated 
with obesity and BF in the case–control and cross-sectional 
studies, respectively. All other haplotypes were not consistently 

linked to excess BF suggesting that the genetic variant respon-
sible for these finding is in LD with the AGAAAAA haplotype 
block.

Several CD36 variants are known to be associated with 
metabolic disorders related to excess BF, such as high plasma 

Table 4 H aplotype frequencies, OR, and 95% CI in the case–
control study

Haplotype Frequency OR 95% CI P

GGCTGGG 0.44 Reference

AACTGAG 0.29 0.98 0.77–1.26 0.52

AACTGGG 0.07 1.58 1.01–2.48 0.13

GGCTGAG 0.05 0.93 0.55–1.58 0.82

AGAAAAA 0.05 2.28 1.33–3.92 0.0008

AGCAGAG 0.02 1.18 0.50–2.77 0.37

AGAAGGG 0.01 1.66 0.56–4.87 0.34

GGCTGAA 0.01 0.69 0.22–2.15 0.69

AGCTGAG 0.01 0.75 0.23–2.41 0.58

Only haplotypes with a frequency above 1% are presented. Order of the 
SNPs used for the analysis: rs1527479, rs3211816, rs3211867, rs3211883, 
rs3211908, rs3211931, rs1527483. Minor alleles for each SNP are underlined. 
ΔBF refers to the mean percentage of BF difference between the common 
haplotype (GGCTGGG) and other haplotypes.
BF, body fat; CI, confidence interval; OR, odds ratio; single-nucleotide 
polymorphism.

Table 5 H aplotype frequencies, Δ values of mean BF%, and Δ 
values of mean BMI in the HELENA-CSS

Haplotype Frequency ΔBF% P ΔBMI P

GGCTGGG 0.45 Reference Reference

AACTGAG 0.28 0.25 0.44 0.08 0.62

AACTGGG 0.07 0.22 0.70 0.12 0.69

GGCTGAG 0.06 0.38 0.54 0.22 0.49

AGAAAAA 0.04 1.5 0.03 0.76 0.04

AGCAGAG 0.02 0.08 0.92 0.02 0.93

AGAAGGG 0.02 −0.14 0.92 0.09 0.87

GGCTGAA 0.01 0.11 0.96 −0.15 0.82

AGCTGAG 0.01 1.42 0.33 0.5 0.51

Only haplotypes with a frequency >1% are presented. Order of the SNPs used 
for the analysis: rs1527479, rs3211816, rs3211867, rs3211883, rs3211908, 
rs3211931, rs1527483. Minor alleles for each SNP are underlined. ΔBF refers 
to the mean percentage of BF difference between the common haplotype 
(GGCTGGG) and other haplotypes.
BF, body fat; HELENA-CSS, HELENA cross-sectional study; SNP, single-
nucleotide polymorphism.

Table 3  Genotype distribution and mean values of BMI and BF% according to the SNPs in the HELENA-CSS

11 12 22 P dominant

rs1527479 GG (n = 328) GA (n = 560) AA (n = 263)

  BMI 21.0 (3.5) 21.3 (3.9) 21.6 (3.7) 0.30

  BF% 26.2 (6.8) 26.4 (7.1) 26.9 (6.6) 0.28

rs3211816 GG (n = 452) GA (n = 505) AA (n = 163)

  BMI 21.2 (3.6) 21.4 (3.8) 21.4 (3.7) 0.72

  BF% 26.5 (6.6) 26.3 (7.2) 26.8 (6.6) 0.38

rs3211867 CC (n = 1,005) CA (n = 140) + AA (n = 6)

  BMI 21.2 (3.7) 21.8 (3.8) 0.03

  BF% 26.4 (6.9) 27.3 (6.8) 0.02

rs3211883 TT (n = 951) TA (n = 190) + AA (n = 10)

  BMI 21.2 (3.7) 21.7 (3.6) 0.03

  BF% 26.4 (6.9) 26.8 (6.8) 0.05

rs3211908 GG (n = 1,047) GA (n = 102) + AA (n = 2)

  BMI 21.3 (3.7) 21.7 (3.8) 0.04

  BF% 26.4 (6.9) 27.4 (6.8) 0.02

rs3211931 GG (n = 342) GA (n = 577) AA (n = 232)

  BMI 21.0 (3.4) 21.4 (3.7) 21.6 (4.2) 0.19

  BF% 26.2 (6.7) 26.5 (7.2) 26.9 (6.9) 0.58

rs1527483 GG (n = 1,008) GA (n = 139) + AA (n = 4)

  BMI 21.3 (3.7) 21.7 (4.0) 0.05

  BF% 26.4 (6.9) 27.1 (6.9) 0.04

Data are means (s.d.). Frequent allele:1; minor allele: 2.
BF%, percentage of body fat; HELENA-CSS, HELENA cross-sectional study; SNP, single-nucleotide polymorphism.
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free fatty acid and triglyceride levels, low high-density lipo-
protein-cholesterol (10–12), insulin resistance, type 2 diabe-
tes mellitus (13,14), and metabolic syndrome (10). Although 
some of these SNPs were genotyped or were in high LD with 
our SNPs, we found no significant association with fasting 
plasma triglycerides, high-density lipoprotein-cholesterol, 
glucose and insulin levels in the cross-sectional study (data 
not shown). In Korean coronary heart disease patients, a com-
mon CD36 (TG)-repeat in intron 3 has been linked to high 
BMI (15). The LD existing between this dinucleotide repeat 
polymorphism and our SNPs is not known. To the best of our 
knowledge, the relation between CD36 gene variability and 
body-weight regulation has not previously been investigated 
in adolescents. An advantage of working with adolescents is 
that their body weight is less likely influenced than adults by 
important lifestyle determinants, such as smoking or alcohol 
intake, which could limit the statistical power to detect genetic 
associations in adults. Our results support the original findings 
in transgenic mice that showed altered BF metabolism, but not 
metabolic disorders. The reasons for these discrepancies war-
rant further investigations.

Previous genome-wide scans (GWAS) for children and ado-
lescents with extreme obesity have not linked CD36 SNPs to 
obesity suggesting that CD36 variability is not a major deter-
minant of obesity risk (27,28). Other reasons may explain the 
lack of association. First, it is possible that no CD36 SNP was 
present on the chips or could be imputed from other SNPs. In 
this study some CD36 tag SNPs were not associated with obes-
ity so, if the associated haplotype block was not appropriately 
tagged by genotyping or imputation, the association with obes-
ity could have been missed. Second, the GWAS were performed 
in children with extreme obesity who may suffer from different 
genetic defects than adolescents with mild obesity (27). Finally, 
in the GWAS with population samples including <700 obese 
children, the P value of the association between CD36 tag SNPs 
and obesity might not reach the required P value threshold in 
GWAS (at least P < 10−7), and thus CD36 associations could 
have been missed.

The identity of the responsible variant(s) for our finding 
is still unknown. Rs3211908 is located 100 base pairs down-
stream of the donor site of exon 7 that codes for the CD36 
amino acids, which interacts with long-chain polyunsaturated 
fatty acids (29). Although the Genomatix MatInspector analy-
sis software (www.genomatix.de) (30) indicates that the T allele 
of rs3211908 abolishes a predicted glucocorticoid receptor 
binding site (i.e., a response element), the likelihood that this 
mutation may affect CD36 gene expression is uncertain owing 
to its intronic position in the middle of the gene. Alternatively, 
the AGAAAAA haplotype spans a locus that include exon 5 
to exon 11, which could be in LD with an as yet undetected 
functional SNP located in this region or elsewhere within the 
CD36 gene.

Several hypotheses might explain the link between CD36 
genetic variability and BF depots. First, CD36 is a cell membrane 
long-chain polyunsaturated fatty acid transporter in a wide 
variety of metabolically active tissues, including heart, muscle, 

and adipocytes (31). Impaired CD36 function could decrease 
the intramuscular fatty acid oxidation rate and thus increase 
the availability of fatty acids for storage in adipocytes (32,33). 
Second, cell coculture experiments have shown that activated 
macrophages secrete various factors that inhibit the formation 
of mature adipocytes (34). A CD36 dysregulation in infiltrated 
macrophages within adipose tissue could alter the signaling 
pathway that feeds back to control adipocyte expansion (34). 
Third, by supplying long-chain polyunsaturated fatty acids and 
oxidized low-density lipoprotein-cholesterol, CD36 plays a 
key role in the activation of peroxisome proliferator–activated 
receptor γ (PPARγ) (35,36), a nuclear receptor responsible 
for adipocyte differentiation and adipogenesis (37). Thus, an 
alteration in CD36 may impact on PPARγ-mediated adipocyte 
differentiation (38).

This study had several strengths and several limitations. 
The analyses were carried out in two independent samples 
of European adolescents, an approach that reduces, but does 
not eliminate, the likelihood of a spurious finding. However, 
even if two independent samples were used to assess the asso-
ciation this might still be insufficient to definitely conclude 
on the possible link between CD36 and obesity given the 
limited sample size of our surveys. Replication in other sam-
ples, drawn from different population background, is neces-
sary to confirm our hypothesis-generating finding. Indeed, a 
posteriori statistical power calculation indicates that using a 
threshold of P < 0.007, the case–control study had a statis-
tical power of 80% to detect ORs ranging between 1.80 and 
2.25 for allele frequencies ranging from 0.30 to 0.10. Similarly, 
using a P value at 0.05 and a common variance of 3.7 kg/m2 
for BMI (6.7% for BF%), the HELENA study had a statistical 
power of 80% to detect a BMI (BF%) difference of 0.7–1 kg/m2 
(1.3–1.8 BF%) for allele frequencies ranging from 0.30 to 0.10, 
respectively. Thus, only large associations could be detected 
in the case–control study. It is therefore likely that the effect 
size observed in the case–control study is overestimated. 
With no doubt, additional studies are necessary to confirm 
the results. Another limitation concerns the characteriza-
tion of the haplotype structure of the CD36 locus. Although 
seven SNPs were used to tag the shorter isoform of CD36, the 
spacing may not be narrow enough to identify all common 
haplotypes. Thus, further fine mapping of the CD36 locus is 
needed to understand the relation between CD36 and body-
weight metabolism. Finally, we used simple anthropometric 
and metabolic traits that may reduce the ability to detect more 
subtle associations.

In conclusion, we have assessed the relation between CD36 
gene variations and obesity and identified a haplotype that was 
associated with obesity and BF% in two independent popula-
tions of adolescents. Further studies are necessary to confirm 
the results and to identify the molecular mechanism relating 
this haplotype with a functional disorder of the CD36 gene that 
could affect body-weight homeostasis.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper at  
http://www.nature.com/oby
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